GBE1 Antibody [P1M6]

Katalog-Nr. F4945

Drucken

Biologische Beschreibung

Spezifität GBE1 Antibody [P1M6] detektiert endogene Spiegel des gesamten GBE1-Proteins.
Hintergrund GBE1 (Glykogen-verzweigendes Enzym 1) kodiert für eine vitale Glykosyltransferase, die für die Einführung von α-1,6-glykosidischen Verzweigungspunkten in lineare α-1,4-Glukoseketten verantwortlich ist, ein Prozess, der für die Synthese kompakter, löslicher Glykogengranula hauptsächlich in Leber und Muskel unerlässlich ist und somit die Energiehomöostase unterstützt. Es verfügt über ein N-terminales helicales Segment, ein Kohlenhydrat-bindendes Modul 48 (CBM48, Reste 76–183), ein zentrales (βα)8 katalytisches Fass, das die katalytische Triade Asp357-Glu412-Asp481 und die Substratbindungsspalte Tyr329 beherbergt, und eine C-terminale Amylase-ähnliche Fassdomäne; die meisten pathogenen Mutationen häufen sich in der katalytischen Region und stören die Proteinfaltung oder die Glucosyltransferaseaktivität. GBE1 arbeitet stromabwärts der Glykogen-Synthase, um verzweigte Glykogenstrukturen zu erzeugen, die während des Fastens oder Trainings schnell durch Phosphorylase mobilisiert werden, was für den Glukosehaushalt entscheidend ist. Biallelische GBE1-Mutationen verursachen die Glykogenspeichererkrankung Typ IV (GSD IV, Andersen-Krankheit), gekennzeichnet durch fehlende oder reduzierte Enzymaktivität, Akkumulation unlöslicher Polyglukosan-Körper, Leberversagen, Myopathie und infantile Letalität in schweren Formen, während partieller Mangel, wie die p.Tyr329Ser-Mutation, die bei aschkenasischen Juden verbreitet ist, zur adulten Polyglukosan-Körper-Krankheit (APBD) führt, gekennzeichnet durch progressive Neurodegeneration, Spastizität und neurogene Blase aufgrund der Polyglukosan-Akkumulation im ZNS.

Nutzungsinformationen

Anwendung WB Verdünnung
WB
1:1000 - 1:10000
Reaktivität Human
Quelle Rabbit Monoclonal Antibody MW 76 kDa,80 kDa
Lagerpuffer PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
Lagerung
(Ab dem Datum des Erhalts)
-20°C (avoid freeze-thaw cycles), 2 years
WB
Experimental Protocol:
 
Sample preparation
1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
5. Remove a small volume of lysate to determine the protein concentration;
6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
 
Electrophoretic separation
1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
 
Transfer membrane
1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
Recommended conditions for wet transfer: 200 mA, 120 min.
( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
 
Block
1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
2. Incubate the film in the blocking solution for 1 hour at room temperature;
3. Wash the film with TBST for 3 times, 5 minutes each time.
 
Antibody incubation
1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
2. Wash the film with TBST 3 times, 5 minutes each time;
3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
 
Antibody staining
1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

Referenzen

  • https://pubmed.ncbi.nlm.nih.gov/26199317/
  • https://pubmed.ncbi.nlm.nih.gov/21075835/

Anwendungsdaten

WB

Validiert von Selleck

  • F4945-wb
    Lane 1: Human fetal liver, Lane 2: PC-3