Sarcomeric α Actinin Antibody [L4D4]

Katalog-Nr. F2624

Drucken

Biologische Beschreibung

Spezifität

Sarcomeric α Actinin Antibody [L4D4] erkennt endogene Spiegel des gesamten Sarcomeric α Actinin Proteins.

Hintergrund Sarcomeric α-Actinin ist ein entscheidendes Aktin-bindendes Protein, das in Muskelzellen, insbesondere im Z-Streifen, vorkommt, wo es eine wesentliche Rolle bei der Aufrechterhaltung der Sarkomerstruktur und -funktion spielt. Es besteht aus einer N-terminalen Aktin-bindenden Domäne (ABD), einer zentralen Stabdomäne, die aus Spektrin-ähnlichen Wiederholungen besteht, und einer C-terminalen Calmodulin (CaM)-Homologiedomäne. Die Spektrin-Wiederholungen vermitteln die Bildung antiparalleler Dimere, was zur strukturellen Steifigkeit des α-Actinin-Dimers und seiner Fähigkeit, Aktinfilamente zu vernetzen, beiträgt. Die Aktin-Bindungsfähigkeit von α-Actinin wird durch Konformationsänderungen reguliert, die durch Phospholipide wie PIP2 und PIP3 induziert werden, welche seine Wechselwirkung mit Actin und anderen Liganden modulieren. α-Actinin erleichtert die Bündelung von Aktinfilamenten, stabilisiert sarkomere Strukturen während der Muskelkontraktion und verankert Signalmoleküle wie Titin und Vinculin. Die CaM-Domäne von Sarcomeric α-Actinin reguliert seine Aktin-Bindungsaktivität als Reaktion auf Calciumsignale weiter. Dieses Protein ist essentiell für die Kraftübertragung und zelluläre Architektur, wobei Mutationen in α-Actinin mit verschiedenen muskelbezogenen Krankheiten, einschließlich Kardiomyopathien und Myopathien, in Verbindung gebracht werden.

Nutzungsinformationen

Anwendung WB, IP, IHC Verdünnung
WB IP IHC
1:1000-1:10000 1:20 1:100
Reaktivität Human, Mouse, Rat
Quelle Rabbit Monoclonal Antibody MW 103 kDa
Lagerpuffer PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
Lagerung
(Ab dem Datum des Erhalts)
-20°C (avoid freeze-thaw cycles), 2 years
WB
Experimental Protocol:
 
Sample preparation
1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature or lyse it by sonication on ice, then incubate on ice for 30 minutes.
2. Adherent cell: Aspirate the culture medium and transfer the cells into an EP tube. Wash the cells with ice-cold PBS twice. Add an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice.Add an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail), sonicate to lyse the cells, and incubate on ice for 30 minutes.
4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
5. Remove a small volume of lysate to determine the protein concentration;
6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
 
Electrophoretic separation
1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 5%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
 
Transfer membrane
1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
Recommended conditions for wet transfer: 200 mA, 120 min.
( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
 
Block
1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
2. Incubate the film in the blocking solution for 1 hour at room temperature;
3. Wash the film with TBST for 3 times, 5 minutes each time.
 
Antibody incubation
1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:10000), gently shake and incubate with the film at 4°C overnight;
2. Wash the film with TBST 3 times, 5 minutes each time;
3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
 
Antibody staining
1389. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

Referenzen

  • https://pubmed.ncbi.nlm.nih.gov/29518289/
  • https://pubmed.ncbi.nlm.nih.gov/39918740/

Anwendungsdaten

WB

Validiert von Selleck

  • F2624-wb
    Lane 1: Mouse brain
    Lane 2: Rat brain
    Lane 3: Human skeletal muscle
    Lane 4: Human heart